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Abstract In this work, we present an effective and
flexible computational approach, which is the result of
an on-going development conducted in our group,
for simulating complex solute–solvent systems and
computing relevant spectroscopic observables. Such an
approach is based on QM/MM molecular dynamics tech-
niques using non-periodic conductor boundary condi-
tions and localized basis sets, combined with a posteriori
high-level quantum mechanical methods for the calcu-
lation of spectroscopic parameters. As illustrative appli-
cations, we report structural and spectroscopic analyses
of acetone, acrolein and glycine radical in aqueous solu-
tions, where solvent effects on the NMR chemical shifts,
UV absorption spectrum and EPR hyperfine coupling
constants, respectively, are investigated and favorably
compared to experimental measurements. In particular,
it will be shown the importance of including dynam-
ical effects in order to reproduce experimental data
accurately. Moreover, we present an infrared analysis
of formamide in both gas phase and acetonitrile from
first-principle molecular dynamics simulations.

Keywords Mean field · NMR · IR · EPR · UV

1 Introduction

The theoretical modeling of solvent effects is a well-
studied topic of modern theoretical chemistry, which has
been extensively discussed in many specialized reviews
[1–3]. Traditionally, implicit solvent models have been
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successfully used to provide valuable information on a
large number of chemical systems in the liquid phase.
Such models effectively treat complex solute–solvent
systems by drastically reducing the number of degrees
of freedom of the environment (solvent), which is mod-
eled as a dielectric continuum, and, then, allowing for
the use of high-level quantum mechanical methods at
an affordable computational cost. Different molecular
properties in solution have been reliably reproduced by
means of continuum based models, such as structural
changes, vibrational frequencies and also more subtle
spectroscopic parameters. However, in almost all cases
static calculations on a single or a few reference config-
urations were performed, therefore neglecting solute–
solvent dynamical effects that are, in many circumstances,
of fundamental importance to interpret and accurately
predict experimental data.

Here, we present an effective discrete/continuum the-
oretical model, referred to as the mean field (MF)
[4–6] model, which is particularly well-suited for treating
solute–solvent systems of variable size and at different
levels of theory, from purely classical force fields based
methods to more sophisticated mixed quantum mechan-
ics/molecular mechanics (QM/MM) and full quantum
mechanics methodologies. The MF model was espe-
cially designed for performing effective phase–space
samplings of the solute–solvent system by using molecu-
lar dynamics techniques. In the framework of our model,
ab initio molecular dynamics can be performed
both in the Born–Oppenheimer [7,8] and the extended-
Lagrangian [9–12] formalism using localized basis func-
tions. Note that the latter, as compared to plane wave
functions, should be considered a more natural choice
for the treatment of non-periodic systems and, besides,
they allow to employ, in an efficient manner, well-trusted
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DFT methods based on hybrid functionals, e.g. B3LYP
[13]. Also, it should be noted that although solvent bulk
effects can be adequately taken into account by dielec-
tric continuum models, specific and relatively strong
interactions, such as hydrogen bonds, that may occur
between a solute and the solvent are generally poorly
described by such models. In some cases, solute–solvent
interactions are characterized by subtle electronic quan-
tum effects, e.g. Pauli exclusion principle and charge (or
spin) transfer that necessarily require a full quantum
mechanical treatment of, at least, a few solvent mole-
cules along with the solute. Remarkably, the MF model
allows to either treat implicitly the whole solvent or, if
necessary, model explicitly a few solvation shells with
full atomic detail.

Moreover, we will show how the combination of the
MF model with a posteriori quantum mechanical cal-
culations makes it possible to obtain a “state of the
art” computational tool for the accurate evaluation of
spectroscopic properties in solution. In particular, in the
present work we will consider, as illustrative applica-
tions, aqueous solutions of acetone, acrolein and glycine
radical, reporting a detailed comparison between com-
puted and experimental spectroscopic parameters, such
as NMR chemical shifts, UV absorption transitions and
EPR hyperfine coupling constants. In all such cases, it
will be shown that thermal effects have a primary role on
the considered spectroscopic properties and, as a con-
sequence, reliable theoretical results can be obtained
only from statistical averages over representative sol-
ute–solvent configurational samplings. To this purpose,
hybrid QM/MM molecular dynamics simulations of the
above aqueous solutions have been performed at room
temperature by treating the solute at full QM level with
a minimum number of solvent (water) molecules, say
two/three solvent shells, at a lower and computation-
ally more favorable level (MM). Note that the solvent
was included explicitly in such simulations to properly
account for the directional hydrogen bonding interac-
tions.

Furthermore, we will present a preliminary study on
the dynamical behavior of formamide in acetonitrile,
where the weakly interacting solvent was entirely
described in terms of a structureless polarizable dielec-
tric. Also, in this case, a comparison with experiments
gave satisfactory results, even if only an indirect com-
parison was possible.

This paper is organized as follows. In Sect. 2, the
basic theoretical formulation of the MF model is pre-
sented and its constituent terms are described in full
details. Also, the computational procedure used to eval-
uate molecular spectroscopic parameters is discussed in
Sect. 2.5 and all the required computational details are

Fig. 1 Illustrative decomposition into system I (explicit system)
and system II (continuum), according to the MF model

provided in Sect. 2.6. In Sect. 3, we report some struc-
tural and spectroscopic results of aqueous solutions of
acetone, acrolein and glycine radical. To be specific, the
solvent effects on the 13C and 17O NMR isotropic shield-
ing constants of acetone are investigated and reported
in Sect. 3.1, the change of UV n → π∗ transition energy
of acrolein on-going from the gas phase to the aqueous
solution in Sect. 3.2 and the EPR hyperfine coupling
constants of glycine radical in Sect. 3.3. In Sect. 3.4,
a detailed normal mode analysis of formamide in the
gas phase and in acetonitrile is presented. Concluding
remarks and perspectives are given in Sect. 4.

2 Methods

2.1 Basic equations

We consider a macroscopic solute–solvent system at
infinite dilution in a NVT ensemble, which obviously
includes the homogeneous liquid as a special case, where,
say in the center, we define a microscopic subsystem,
referred to as system I, which contains the solute and
n solvent molecules, with n << N (see Fig. 1). Hence,
we can decompose the overall system in two subsystems
with fixed volume and number of molecules. In other
words, we can say that system I is embedded into a cav-
ity of the macroscopic system. We assume, for the sake of
simplicity, that the potential energy of the whole system
can be decomposed as

U tot(xI , xII) = UI(xI) + UII(xII) + V(xI , xII) (1)
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with xI and xII the coordinates of system I and of the
remaining part of the macroscopic NVT system (II)
respectively, UI and UII the internal energies and V the
interaction energy between the two systems. Then, we
have that the (Helmholtz) free energy of a given phase
space position of the molecules in the cavity is

A(xI) = UI(xI) − kT ln

(
�−1

∫
e−β[V(xI ,xII)+UII(xII ,pII)]

dxIIdpII

hdII

)
(2)

where xI , pI and xII , pII are the coordinates and conju-
gated momenta of system I and II respectively, dII is the
total number of classical degrees of freedom in the mac-
roscopic subsystem, h is the Planck’s constant, �−1 is a
constant providing the quantum correction and β−1 =
kT with k the Boltzmann’s constant and T the absolute
temperature. Note that V contains a repulsive term that
prevents solvent molecules from penetrating the cavity
boundaries, as described below, and consequently the
integrand of Eq. 2 has zero measure in region I. If we
now choose as reference state the one where all the
interactions between the two subsystems are switched
off (V = 0), we can express the free energy change as

�A(xI) = A(xI)−Aref(xI)

=− kT ln

(∫
e−β[V(xI ,xII)+UII(xII ,pII)]dxIIdpII∫

e−βUII(xII ,pII)dxIIdpII

)

(3)

which is known as the “potential of mean force” or
simply “mean field” (MF), W(xI) ≡ �A(xI). This is
the field experienced by the explicitly treated mole-
cules in a given configuration {xI} due to the average
interactions with the environment. Furthermore, we can
assume that the non-bonded interactions can be sepa-
rated into (long-range) electrostatic and (short-range)
dispersion-repulsion contributions. Accordingly, we
have for the interaction potential, V :

V = Vdisp−rep + Velec + Vcav (4)

where the last term on the r.h.s. is a “hard wall” poten-
tial that has been introduced to account explicitly for
the physical confinement of molecules belonging to sys-
tem I inside the cavity of the macroscopic system. If we
substitute Eq. 4 into Eq. 3, we can define, after simple
mathematical manipulation, three corresponding terms
for W(xI):

W(xI) = Wdisp−rep(xI) + Welec(xI) + Wcav(xI) (5)

where

Wcav(xI) = −kT ln

(∫
e−β[Vcav+UII ]dxIIdpII∫

e−βUII dxIIdpII

)
(6)

Welec(xI) = −kT ln

(∫
e−β[Velec+Vcav+UII ]dxIIdpII∫

e−β[UII+Vcav]dxIIdpII

)
(7)

Wdisp−rep(xI) = −kT ln

(∫
e−β[Vdisp−rep+Velec+Vcav+UII ]dxIIdpII∫

e−β[Velec+Vcav+UII ]dxIIdpII

)

(8)

In particular, Wcav is known as the cavitation free
energy, i.e. the work spent to form a cavity into the liq-
uid, which depends only on the cavity size and shape
and is a constant for a fixed cavity. It should be noted
that, rigorously speaking, a separation of the interaction
energy into different contributions, as shown in Eq. 4,
is not physically possible following a general quantum
mechanical treatment. However, according to the Ben–
Naim’s definition of the solvation process [14], we can
conveniently assume that the mean field, W(xI), is com-
posed of the conceptually simple terms provided in Eq. 5
(see, for example, the comprehensive review of Tomasi
and Persico [1]).

Various continuum models have been proposed in the
literature that differ in the way W is approximated [1,
15,16]. The present MF model is the result of a long-
time effort to develop a sophisticated tool that allows to
study efficiently solvent effects on generic solute mole-
cules, with or without the presence of explicit solvent
molecules and using different levels of theory, from
computationally inexpensive, but less accurate, mole-
cular mechanics (MM) methods to more realistic hybrid
QM/MM or full QM methods. Moreover, such model
allows to perform molecular dynamics both in Born–
Oppenheimer [7,8] and extended-Lagrangian [9–12]
frameworks. In the following sections, we describe in
some detail how Wdisp−rep, Welec and Wcav can be effec-
tively modeled. Here, we want to sketch the MF formal-
ism in the case that system I has a quantum core, e.g.
the solute, which can be polarized in response to solvent
effects. In analogy to the classical expression of the free
energy, A(xI) = UI(xI) + W(xI), we have for a quantum
mechanical system:

A(xI) = E(P, xI) + W(P, xI) (9)

where E(P, xI) and W(P, xI) are respectively the inter-
nal energy and the mean field contributions and P is the
electronic density matrix. The explicit dependence of the
latter two terms on P is to remark that they are mutually
polarized and, as a consequence, the quantum mechani-
cal solution should be obtained self-consistently. More-
over, when the explicit molecular system is treated by
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a mixed quantum/classical potential (QM/MM), e.g. a
solute (QM) embedded with MM solvent molecules,
E(P, xI) can be conveniently partitioned as proposed
recently in [6]:

E(P, xI) = Emodel,QM(P, xI)+Ereal,MM(xI)

−Emodel,MM(xI) (10)

where we refer to the entire molecular cluster as real,
whereas model is the quantum core (solute) plus the
point charges located at the same positions of the
remaining explicit MM atoms (e.g. the set of the partial
atomic charges of a non-polarizable MM force field). In
Eq. 10, Emodel,QM(P, xI) is the internal energy of model
treated at QM level, expressed as a function of the sys-
tem coordinates, xI , and density matrix, P, Ereal,MM(xI)

is the MM internal energy of the real system, which
obviously depends only on xI , and Emodel,MM(xI) is the
MM internal energy of model. Although such decompo-
sition is not derived straightforwardly, it provides a well-
defined, single valued and differentiable potential well
suited to perform QM/MM molecular dynamics simula-
tions.

2.2 The cavitation free energy, Wcav

Given an explicit molecular system (system I), the first
step of the mean field approach consists of creating a
suitable cavity into the dielectric continuum. To this
end, we have used an improved GEPOL procedure [17,
18] that allows to form efficiently cavities of general
shape from interlocked spheres, typically centered on
the atomic sites, and to partition the obtained cavity
surface in small triangular elements (tesserae), which
are needed to solve numerically the electrostatic prob-
lem (see Sect. 2.3). In particular, if the whole solvent
is treated implicitly, the cavity surface is built up on
the basis of the solvent accessible surface of the solute
(usually in full QM calculations). On the other hand, if
some solvent molecules, say the first two or three solva-
tion shells, are treated explicitly along with the solute,
then the cavity surface is more conveniently chosen as a
smooth and regular surface, e.g. a sphere or an ellipsoid.

The cavitation free energy, Wcav, is defined as the
work needed to form such a cavity into the solvent,
regardless of the chemical nature of the “solute” (sys-
tem I). Hence, for a given solvent under specific physical
conditions, e.g. density and temperature, it does depend
only on the size and shape of the cavity and is a constant
for a fixed cavity. From a physical point of view, the
actual value of Wcav is the result of the subtle balance
of enthalpic and entropic contributions due to solvent–
solvent interactions that, macroscopically, give rise to

the surface tension. Although several different models
have been proposed in the literature to evaluate the cav-
itation free energy, in the context of continuum meth-
ods the most common are the hard sphere model, as
applied in Pierotti’s scaled particle theory (SPT) [19]
and its generalization to cavities formed by a collection
of spheres, known as the Claverie–Pierotti (CP) model
[20]. Recently, a general and quite flexible approach [21]
to compute Wcav, based on the SPT of a liquid of sphero-
cylindric molecules, has been presented as an extension
of the usual formulation. Such a model is particularly
well-suited in the more general case of non-spherical
(rod-like) solvents and improves the description of the
solvation process when solvent is not isotropically dis-
tributed, for example in liquid crystals where solvent can
be highly ordered [21].

In the present work, all the solvents and cavities con-
sidered are nearly spherical and, for convenience, we
have adopted the popular CP model [20], as imple-
mented in Gaussian03 [22]. Also, when part of the sol-
vent was treated explicitly, an “hard wall” potential has
been used to keep the molecules confined into a spher-
ical cavity (solvent molecules approaching the cavity
boundaries undergo elastic collisions with respect to
their center of mass motion).

2.3 The electrostatic (reaction field) free energy, Welec

According to electrostatic theory [23], a charge distrib-
ution embedded in the cavity of a dielectric continuum
experiences an electric field, commonly known as “reac-
tion field”, due to the induced polarization of the dielec-
tric medium. Within the continuum approximations, the
reaction field potential, �RF, can be obtained by solving
the Poisson equation [23] both analytically, if the cavity
shape is a sphere or an ellipsoid, or numerically with
either the finite difference [24,25] or the boundary ele-
ment (BE) [26–29] methods. The so-called polarizable
continuum model (PCM) is probably the most refined
and reliable of all the BE approaches both for quan-
tum mechanics (QM) and molecular mechanics (MM)
applications, in a wide range of problems ranging from
structure to thermodynamics, kinetics and spectroscopy
in both isotropic and anisotropic environments [1,3,30].
The method has been recently improved to take into
proper account also the so called outlying charge effects
(due to the solute electronic density tails that penetrate
into the continuum) [3,31,32,37]. A quite popular var-
iant of the method is the conductor-like model [38,39]
(corresponding to the PCM limit for infinite dielectric
constant, but used with satisfactory results also for sol-
vent of rather low polarity): its implementation in the
PCM framework (CPCM) is described in [39,40]. In all
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these methods the solute or the region of interest is
represented in atomic details and embedded in a suitable
cavity, whose surface is finely subdivided into small tiles
(tesserae). Next, the solvent reaction field is described
in terms of apparent point charges centered on tesserae
(qasc) and self-consistently adjusted to the solute elec-
tron density [41].
The solute–solvent interaction energy is

Eint = �†qasc =
tesserae∑

i

�iqasc,i (11)

where the column vectors � and qasc collect the solute
electrostatic potential and the solvation charges in the
surface tesserae, respectively. The solvation charges are
computed as qasc = Q�, where Q is a geometric matrix,
depending on the position and size of the surface tes-
serae. The core of the model is then the definition of the
Q matrix. For isotropic solvents it is defined as [41]

Q = T−1R

T = ε + 1
ε − 1

S − 1
2π

DAS (12)

R = −I + 1
2π

DA (13)

where ε is the dielectric constant, I is the unit matrix,
A is a diagonal matrix collecting the area of tesserae
and the matrices S and D are related to the electrostatic
potential and to the electric field generated by the solva-
tion charges, respectively. Taking the limit for ε → ∞,
the CPCM, much simpler, expression is obtained:

Q∞ = −S−1 (14)

q∞ = Q∞� (15)

where

Sii = 1.0694

√
4π

ai
(16)

Sij = 1
|si − sj| (17)

si and ai being the position vector and the area of the
ith tessera, respectively. To model a real solvent, with
finite dielectric constant, the solvation charges have to
be scaled:

qasc = ε − 1
ε

q∞ (18)

Hence, for a given molecular configuration of the
explicit system, xI , the electrostatic free energy, Welec,
are given by

Welec = 1
2

∑
i

�i(ri)qasc,i (19)

We recall that the PCM formulation originally derived
by Tomasi and coworkers [26] (in the PCM literature this
version is usually referred to as DPCM) is less accurate
than those illustrated above, because it does not include
the effects of the outlying charge. However, when sol-
utes are treated at the MM level electronic tails are obvi-
ously not present, and PCM reduces to DPCM. Note
that the DPCM solvation charges depend on the normal
component of the electric field on the surface (unlike
PCM and CPCM charges depending on the potential)
[

2π
ε + 1
ε − 1

A−1 − D†
]

qasc = −En (20)

where D† is the adjoint of matrix D and En collects
the normal electric field on tesserae. This implies an
increased computational burden and some numerical
noise, unless very small tesserae are used. Thus the
CPCM version, together increasing effectiveness and
numerical stability, allows to use the same model in MM,
QM and QM–MM applications without introducing any
inconsistency. Indeed, we have found that Welec con-
verges more rapidly with the number of tesserae, Ntes,
and generally is more stable by using the present meth-
odology (data not shown). On the grounds of the same
tests, we have chosen Ntes in such a way that the aver-
age tessera area was less than 0.7 Å2 for all the systems
discussed in the following where part of the solvent was
treated explicitly (spherical cavities), and about 0.2 Å2

when the cavity was constructed on the solute molecu-
lar surface (all solvent implicitly treated). Also, in the
former case the dielectric continuum response, e.g. the
reaction field, was calculated considering a radius of
Rrf = Rcav + 1.8 Å, with Rcav the radius of the spherical
cavity, to avoid numerical instabilities.

The cavity surface has been partitioned using the GE-
POL procedure [17,18] and the S−1 matrix has been
obtained by direct inversion and stored once for ever
at the beginning of each simulation since in the pres-
ent approach S does not depend on the dynamics of the
explicitly simulated system. For the same reason, the
energy derivative with respect to a generic coordinate α

is much simpler than the complete expressions including
cavity deformation [39], reducing to

Wα
elec =

tesserae∑
i

�α
i qasc,i (21)

Of course, computation of the derivative of the elec-
trostatic potential generated by the explicitly simulated
system at tessera i (�α

i ) is straightforward whenever one
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deals with classical systems described in terms of fixed
atomic charges.

2.4 The dispersion–repulsion free energy, Wdisp−resp

The dispersion–repulsion contribution, Wdisp−resp, is
related to short-range interactions between system I
and the outer solvent. Generally, Wdisp−resp is deter-
mined from some empirically derived parameters and,
in the case of a quantum mechanical treatment of the
explicit system, does not enter in the self-consistent
calculations of the wavefunction, �(xI), which is only
perturbed by the long-range electrostatic effects.
According to usual methods [42,43] developed in the
PCM framework, we can assume that the dispersion–
repulsion interactions can be modeled by a simple empir-
ical potential and, consequently, we can obtain Wdisp−resp
by integrating such potential times the density distribu-
tion of the outer solvent, treated as a continuum, from
the cavity surface to infinity. This is a very convenient
and effective procedure to determine the dispersion–
repulsion free energy when the whole solvent is treated
implicitly. In this case, Wdisp−resp represents effectively
the average solute–solvent(implicit) interactions. How-
ever, if the solute and a few solvent shells are treated
explicitly with the cavity surface chosen as a smooth
and regular surface, then the dispersion–repulsion term
accounts mainly for the short-range solvent(explicit)–
solvent(implicit) interactions and is more conveniently
modeled by the effective approach originally presented
in [4] (see also [5,6] for applications in the context of MM
and QM/MM molecular dynamics simulations, respec-
tively) and described in the following.

First, we assume that the solute center of mass posi-
tion is constrained at the center of the cavity, whereas
solvent molecules are confined by means of an “hard
wall” potential (see Sect. 2.2). Note that for consistency
with [4], hereafter we refer to the dispersion–repulsion
term as the van der Waals (VdW) potential, Wvdw ≡
Wdisp−resp, formally obtained following the same sta-
tistical mechanical derivation presented above (Eq. 8).
Wvdw should be regarded as a short-range potential, i.e.
acting solely on the molecules very close to the cavity
boundaries. Indeed, we can express Wvdw in terms of
a potential that depends on the distance of a molecule
from the cavity surface, defined as the vector pointing
from specific site(s) on the molecule to its closest point
on the surface. Also, we can reasonably assume that such
a potential does not change significantly for cavities of
sufficiently regular shapes containing the same molec-
ular systems at the same physical conditions, in other
words we can assume that it does not depend on the
local curvature of the surface. Then, we can set up an

empirical procedure to determine the functional form
of such a potential by considering, for convenience, a
spherical cavity.

First, we assume that the potential Wvdw(r) is a radial
function acting only on the center of mass of the explicit
solvent molecules embedded in the spherical cavity.
Then, we express Wvdw(r) as the sum of a set of Ng

Gaussian functions, gi, whose centers, ri, are equally
spaced over a radial direction of the spherical cavity:

Wvdw(r) =
Ng∑
i

gi(r − ri) =
Ng∑
i

λie
[− (r−ri)2

2σ2 ] (22)

Also, we assume that each gi(x) function has the same
spread, σ , but a variable height, λi, which is a multiple
of a fixed amount (λi = nih) and is determined empiri-
cally from a test simulation using the overall density, ρ0,
of the system as a reference. The method works as fol-
lows. Given a spherical cavity with radius Rs, the number
of Gaussian functions is obtained from Ng = Rs/(2σ)

(with σ = 0.125 Å), that is, gi+1(x) is centered at a dis-
tance 2σ from gi(x) along the radial direction. Moreover,
we divide ideally the sample into Ng concentric spher-
ical layers, each one corresponding to a gi(x) function,
with a width of 2σ . During the test simulation, after a
certain time interval, τ (with τ = 20 ps), the local den-
sities ρ(ri) computed on each spherical layer are com-
pared to the overall density ρ0, which is a constant. If
ρ(ri) > ρ0, the corresponding Gaussian height centered
at ri is increased by one unit h, with h = 0.01 kJ/mol,
(ni,new = ni,old + 1), otherwise, if ρ(ri) < ρ0, the height
is decreased by the same amount (ni,new = ni,old − 1).
In a few nanoseconds, Wvdw(r) converges to an optimal
potential function, that is, it does not change signifi-
cantly anymore. The final form of the van der Waals
term is determined as an average of the instantaneous
Wvdw(ti) collected during such a test simulation.

It should be noted that Wvdw(r), obtained as described
above, depends on the specific physical conditions, such
as density and temperature, and on the solvent molec-
ular model considered and is not generally transferable
to other solvents. However, we have observed that for
water, the popular SPC and TIP3P models give rise to
rather similar potentials (data not shown).

2.5 Calculation of spectroscopic properties

Spectroscopic parameters of molecules in solution rep-
resent invaluable sources of information on both their
properties and their interactions with the environment
(solvent). In most cases, the influence of the solvent
on spectroscopic properties could not be neglected. To
conveniently describe such solvent effects, we can
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conceptually make a decomposition in direct and
indirect contributions: the former are due to “direct”
solute–solvent interactions, such as electrostatic or
hydrogen bond interactions, whereas the latter are
responsible for changes in the average structure and in
the dynamics of the solute, which ultimately could affect
solute spectroscopic parameters. Both contributions
should be properly taken into account by theoretical
models developed to reproduce accurately spectroscopic
observables. In particular, there are a number of spectro-
scopic parameters, e.g. NMR shielding constants, [44],
UV-vis electronic transitions [45] and EPR hyperfine
coupling constants [46,47], that do depend on the
solute–solvent structural configuration, or better on the
statistical average of such configurations, and other
parameters that are also related to the detailed dynam-
ical behaviour of the molecular system, such as infrared
spectra and, more generally, spectroscopic parameters
related with molecular relaxation.

A very effective theoretical approach to study all
such kind of spectroscopic properties is to use molec-
ular dynamics methodologies combined with high level
quantum mechanical calculations. As far as solute–
solvent systems are considered, we have shown [48,49]
that a computational protocol both flexible and reliable
consists of (1) sampling a representative number of (sol-
ute–solvent) molecular configurations by means of MD
simulations using the mean field model described above
and (2) performing a posteriori spectroscopic calcula-
tions on the same explicitly simulated system, including,
for consistency, solvent effects provided by the dielec-
tric continuum. About such a procedure, a few points
deserve some comments. In the first step, we should care-
fully consider if the solvent can be fully treated implicitly
or if some solvent shells have to be included explicitly in
the simulation. Generally speaking, for polar and protic
solvents, like water, capable of forming specific solute–
solvent interactions, it is necessary to treat explicitly at
least part of the solvent. On the other hand, for weakly
interacting non-polar solvents, an implicit description is,
in most cases, efficient and accurate at the same time.
Moreover, whenever the solvent is treated explicitly, it
is usually more convenient to model it at a lower level
of theory with respect to the solute, e.g. by using hybrid
QM/MM approaches. Note, however, that although such
a choice is very advantageous for the sampling, it could
be inadequate for the subsequent quantum mechani-
cal calculations of spectroscopic properties. It has been
shown that in some cases, e.g. NMR chemical shifts,
subtle quantum effects, such as quantum exchange and
Pauli exclusion principle, between the solute and the sol-
vent molecules in the first solvation shell are relatively
important and should be considered in the calculations

(see, for example [50]). Hence, if necessary, a limited
number of solvent molecules, along with the solute, are
treated at QM level, whereas the remaining part of the
solvent is included in the effective quantum Hamiltonian
as an embedding electrostatic field, made up of point
charges. In addition, the dielectric continuum is also
included to account for long-range interactions. Fur-
thermore, the QM computational method used in step
(2) (spectroscopic calculations), including the choice of
the basis set, is completely independent and could dif-
fer from the one used for the sampling. Remarkably,
depending on the parameter considered, the present
protocol allows to select the most appropriate QM meth-
odology [51]. On the other hand, state of the art meth-
odologies based on direct “on the fly” calculations of
spectroscopic parameters, such as UV spectra, [52] from
ab initio MD simulations within the CPMD [53] for-
malism are generally restricted to less satisfactory DFT
methods relying on the generalized gradient approxima-
tion (GGA).

2.6 Computational details

All the room temperature QM and QM/MM molecu-
lar dynamics simulations reported in the present work
were performed according to the atom centered den-
sity matrix propagation (ADMP) [10–12] formalism, in
which the density matrix of the atomic basis set evolves
together with the nuclei as dynamic variable. The core
and valence orbitals were weighted differently during
the dynamics with µvalence = 0.1 amu bohr2 ≈ 180 a.u.
for the valence electrons and µcore obtained according
to the tensorial fictitious mass scheme described in [11].
A constant thermal energy has been enforced by scaling
nuclear velocities every 2,500 steps, with a time step of
0.2 fs. The DFT B3LYP [54] method based on Becke’s
hybrid exchange–correlation functional [13] was used
in all simulations, as well as quantum mechanical cal-
culations, with an ad hoc atomic basis set, hereafter
referred to as N06, that reduces significantly the basis
set superposition error (BSSE) and is particularly well-
suited for ab initio molecular dynamics, with the excep-
tion of formamide for which a B3LYP/6-31G(d,p) level
of theory was employed. Simulations in the condensed-
phase were performed using the MF model described in
the preceding sections. In the aqueous solutions simu-
lations of acetone, acrolein and glycine radical, the sol-
vent was partially included explicitly according to an
hybrid QM/MM scheme: the QM region, which included
only the solute computed at B3LYP level of theory, was
solvated with about 130 TIP3P water molecules (MM
region) and embedded into a spherical cavity of a dielec-
tric medium with a radius of 11.8 Å. The center of mass
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of the solute was constrained at the center of the cavity.
Interactions between QM and MM parts, as usual, were
composed of both electrostatic and van der Waals inter-
actions, where the latter were modeled according to the
Lennard–Jones potential parameterized by Freindorf et
al. [55] [note that therein a different basis set was used, 6-
31+G(d), which has provided very similar results in test
calculations compared to the basis set (N06) employed
in this work]. In the simulation of formamide in acetoni-
trile, solvent was included implicitly and the molecular
cavity was obtained according to the GEPOL procedure
using Pauling atomic radii. All the quantum mechan-
ical calculations and the QM and QM/MM molecular
dynamics simulations have been performed with a mod-
ified version of the Gaussian package [22].

3 Results and discussion

3.1 NMR shielding constants

Nuclear magnetic resonance (NMR) spectroscopy is
probably the most popular and powerful spectroscopic
technique in chemistry. Detailed information on molec-
ular structure and dynamics could be extracted from
NMR mono and bidimensional spectra. As an example,
NMR chemical shifts of magnetically active isotopes,
such as 1H, 13C or 17O, are routinely used to charac-
terize chemical compounds [56] and NMR relaxation
measurements provide unique dynamical information
of internal motions in proteins [57]. From a theoretical
point of view, several studies [56,58] have shown that
NMR shielding tensors can be computed quite accu-
rately according to the gauge-including atomic orbital
(GIAO) [59,60] formalism at both DFT or post-Hartree
Fock level of theory. However, given the time resolution
of NMR spectroscopy, dynamical averaging of molecu-
lar rotations and vibrations should often be taken into
account in order to reproduce quantitatively experimen-
tal measurements.

Here, we consider, as a test case, an aqueous solu-
tion of acetone. If we evaluate the solvent effects on the
13C and 17O NMR isotropic shielding constants of its
characteristic carbonyl group from quantum mechani-
cal calculations of acetone and acetone–(H2O)2 cluster
plus PCM, we obtain significant deviations from experi-
mental results [�σ (17O): 92.3 ppm (theory), 75.5 (exp.);
�σ (13C): −17.2 ppm (theory), −18.9 (exp.)]. Such dis-
crepancies are largely due to the neglect of thermal
fluctuations of the solute–solvent arrangement and
improvements of the computed parameters can only be
expected by inclusion of such dynamical information. In
[49], we have shown how the combination of the MF

Table 1 Average geometrical parameters of acetone in aqueous
solution issuing from MM and QM/MM simulations

MMa QM/MM

C=O 1.222 (0.002) 1.226 (0.003)
C–C 1.511 (0.002) 1.508 (0.003)
C–H 1.090 (0.001) 1.098 (0.003)
C–C=O 121.5 (0.5) 121.0 (0.5)
C–C–C 115.7 (0.6) 117.7 (0.5)

Bond distances are in Å, angles in degrees. Standard error are
reported in parentheses
a Taken from [49]

model with high-level spectroscopic calculations leads
to results with satisfactory accuracy for such a molecu-
lar system. In particular, the MF model has been used
to simulate acetone with some explicit water molecules
and, from the obtained configurational sampling, a pos-
teriori quantum calculations of NMR shielding con-
stants have been performed. Note that water was not
entirely modeled as a continuum to account for the
specific hydrogen bond interactions with the carbonyl
group of acetone. In the present review, we compare
the results obtained from the 1 ns classical MD simu-
lations of [49], where the solute and the solute–solvent
interactions have been parametrized on the basis of ab
initio calculations, a short CPMD [53] simulation and
experimental data, with a more sophisticated QM/MM
simulation (see Sect. 2.6 for details).

First, we analyze the most relevant aspects of the
solute–solvent structure. In Table 1, the average geo-
metrical parameters of acetone in aqueous solution are
reported for both MM and QM/MM simulations. An
overall satisfactory agreement is observed. Note that
the extent of the C=O bond distance was readjusted in
MM by choosing a different equilibrium distance with
respect to the gas phase (r0 = 1.2080 Å, gas phase;
r0 = 1.2170 Å, solution), whereas the carbonyl elon-
gation observed in QM/MM comes out naturally from
the interactions with water [d(C = O) = 1.213 Å, gas
phase optimized structure]. Also, very close results are
obtained considering the radial distribution functions
(RDF) of the water molecules with respect to the car-
bonyl oxygen, as shown in Fig. 2. From the integration of
the RDF’s, it has been found that, as expected, two water
molecules are on average hydrogen bonded to the car-
bonyl group, where each water molecule forms only one
hydrogen bond with the acetone oxygen, while the sec-
ond hydrogen atom is pointing away (see Fig. 2b). More-
over, a very similar hydrogen bond distribution has been
obtained in the two simulations, as reported in Table 2.
All the results suggest that the two MD methodolo-
gies considered (MM and QM/MM) are nicely consis-
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Fig. 2 a O· · ·Ow and b O· · ·Hw radial distribution functions of
acetone in aqueous solution as obtained from MM [49] (solid line)
and QM/MM (dashed line) molecular dynamics simulations

Table 2 Average number of hydrogen bonds between acetone
and water issuing from MM and QM/MM simulations

MMa QM/MM

No. of H-bonds 2.0 2.0
% 1 H-bond 15 13
% 2 H-bonds 66 74
% 3 H-bonds 19 13

a Taken from [49]

tent to one another. Note, however, that MM generally
requires a careful development and validation of a reli-
able solute–solvent force field, introducing, if necessary,
additional non-standard parameters, such as the lone
pairs on the carbonyl oxygen (neglecting such terms
could result in an erroneous solute–solvent structural
arrangement, see for example [49]).

In Table 3, the NMR isotropic shielding constants
relative to the acetone C=O group, both in gas phase
and in aqueous solution, are reported and compared
to available experimental data. QM/MM and MM [49]
results were obtained according to the computational

Table 3 13C and 17O NMR isotropic shielding constants of
acetone in the gas phase and in aqueous solution, computed
within the gauge-including atomic orbital (GIAO) formalism at
B3LYP/6-311+G(2d,2p) level of theory

MMa QM/MM Exp.

17O Gas phase −340 −342.8
Solution −253 −254.6
� 87 88.2 75.5

13C Gas phase −23 −29.6
Solution −42 −48.3
� −19 −18.7 −18.9

Values are in ppm, standard error is 2–5 ppm
a Taken from [49]

procedure described in Sect. 2.5, including in the QM
region the two closest water molecules to the carbonyl
group. Note that QM/MM gas phase shielding constants
were computed from the acetone optimized structure.
Remarkably, the extent of solvent effects on such mag-
netic properties is reasonably well reproduced in both
cases. The changes in the 13C NMR shieldings on-going
from the gas phase to the liquid are in excellent agree-
ment with experiment, within the statistical noise. On
the other hand, results on 17O NMR shieldings are some-
what less accurate. However, an error of about 10 ppm
should be considered acceptable and, besides, no scaling
factors or other kind of corrections were applied to the
reported results.

3.2 UV electronic transitions

Most carbonyl compounds show a characteristic UV
absorption corresponding to the excitation of a non-
bonding (n) electron on oxygen into an antibonding
π∗ orbital of the C=O group in the region between
4.0 and 4.5 eV. Also, a solvatochromic blueshift of such
a transition is usually observed in going from the gas
phase to aqueous solution, as found for acetone [61–63]
and predicted for formaldehyde. [64,65] The generally
accepted interpretation of such a shift is that the elec-
tronic ground-state has a larger dipole moment with
respect to the first excited state and, as a consequence, it
is more stabilized in polar solvents, such as water. How-
ever, the actual extent of the observed blueshift is the
result of different and opposite effects, not only polar
effects (see for example [66]).

In ref. [48] the computational approach described
in the Sect. 2 was fruitfully employed to understand
more deeply such physical phenomenon by consider-
ing in some detail the case of acrolein (CH2CHCHO),
which is the simplest representative of the α,β-unsatured
aldehyde class. In particular, a NVT QM/MM simula-
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tion of acrolein + 134 TIP3P water molecules and a full
QM simulation of acrolein in vacuo were performed for
24 ps, including 4 ps of equilibration, using the ADMP
methodology [10–12] (see ref. [48] for details). UV exci-
tation energies and oscillator strengths were computed
within the TD-DFT formalism employing the B3LYP
functional and the 6-311++G(2d,2p) basis set. The con-
sistency of such basis set in spectroscopic calculations
was validated in a recent work [67].

The nature of the solvent (water) effects on the UV
n → π∗ transition energy of acrolein was analyzed by
evaluating the relative contributions due to direct (sol-
vent polarization and H-bonding) and indirect (solute
structural rearrangements) effects. Note that the UV
absorption spectrum of acrolein was studied experi-
mentally in different solvents [68–74], as well as in gas
phase [75–77], and a solvatochromic blueshift of 0.20–
0.25 eV was observed, as a result of water solvation.
In Table 4, results for the computed blueshift of the
n → π∗ vertical transition of acrolein, from the gas
phase and condensed phase MD simulations at room
temperature, are reported and in Fig. 3 the correspond-
ing spectra are plotted. The overall computed blueshift
is 0.26 ± 0.01 eV (last line of Table 5), in good agree-
ment with experiments (0.20–0.25 eV). Such a result was
obtained by treating, in the aqueous solution calcula-
tions, the two closest water molecules to the C=O group
at QM level, along with acrolein (Acrolein + 2H2OQM +
132H2OMM + MF). Besides, when water molecules are
all treated as point charges (Acrolein + 134H2OMM +
MF), the blueshift is unchanged within the statistical
noise, 0.25 ± 0.01 eV, as noted in a recent study for the
case of acetone [49]. This means that solvent effects
on the n → π∗ vertical transition are essentially of
electrostatic nature. Also, we have evaluated the sep-
arate contributions to the blueshift coming solely from
the solute structural changes (second line of Table 5)
and from the first solvation shell of the C=O group
(Acrolein + 2H2OQM), that is including the closest two
water molecules to the carbonyl oxygen. Remarkably,
solute geometry distortions lead to a not negligible red-
shift (−0.08 eV) and, hence, the direct solvent effects
on the spectroscopic property, once the solute geometry
has changed, is about 0.34 eV. Also, about half of such
amount is provided by the first two water molecules sur-
rounding the C=O group (0.18 eV), which means that
H-bonding and bulk effects are nearly equal.

3.3 EPR isotropic coupling constants

It is now well established that, contrary to the parent
molecule, glycine radical prefers a neutral structure (i.e.
NH2-CH-COOH in place of NH3

+-CH-COO−) even in

Table 4 Average geometrical parameters of acrolein issuing from
gas phase (QM) and aqueous solution (QM/MM) simulations

Gas phase Solution �

C=O 1.214 (0.002) 1.224 (0.002) 0.010
C–C 1.479 (0.002) 1.465 (0.002) −0.014
C=C 1.339 (0.002) 1.341 (0.002) 0.003
C–C=O 123.9 (0.3) 124.0 (0.3) –
C=C–C 121.0 (0.3) 120.6 (0.3) –
C=C–C=O 180 (1) 180 (1) –
µ 3.37 (0.01) 4.97 (0.01) 1.6

Bond distances are in Å, angles in degrees. Standard errors are
reported in parentheses. Data taken from [48]
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Fig. 3 Acrolein UV spectra relative to the first singlet n → π∗
electronic transition, as computed from the gas phase and aque-
ous solution MD simulations at TD-DFT B3LYP/6-311+G(2d,2p)
level of theory

Table 5 UV n → π∗ transition energies of acrolein in the gas
phase and in aqueous solution, computed within the TD-DFT
formalism at the B3LYP/6-311+G(2d,2p) level of theory

n → π∗ (eV)

Gas phase 3.58
Solution

Acrolein 3.49 (−0.08)
Acrolein + 2H2OQM 3.68 (+0.10)
Acrolein + 2H2OQM+132H2OMM+PCM 3.84 (+0.26)

Values are in eV. Standard error is 0.01 eV. Data taken from [48]

aqueous solution [78,79] and that cationic and anionic
forms play a negligible role except at extreme pH val-
ues. However, some of the isotropic hyperfine splittings
of the radical (especially Hα) show values quite far
from those expected for similar radicals or observed
for the zwitterionic form of the radical in the solid
state [80]. This stimulated a number of theoretical stud-
ies, which ended up with a satisfactory explanation of
the EPR parameters in structural terms when intramo-
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Fig. 4 Optimized structure of the glycine radical computed at
B3LYP/NB level of theory
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Fig. 5 Normalized probability distributions of the φ(H1NCαC),
φ(H2NCαC) and φ(NHαCCα) dihedral angles of glycine radical
in aqueous solution issuing from a QM/MM molecular dynamics
simulation

lecular vibrational averaging and solvent effects were
taken into account by an integrated computational pro-
cedure [81]. However, some limitations are still pres-
ent in the theoretical approach since dynamical solvent
effects were not taken into account and some hypoth-
esis about additivity of different effects was unavoid-
able. The dynamical procedure described in this paper
allows a more direct treatment in which all short-time
dynamical effects are taken into account simultaneously
in a coherent way. In analogy with the previous cases of
acetone and acrolein, a NVT QM/MM simulation of the
glycine radical solvated with 134 TIP3P water molecules
was performed at room temperature (300 K) for 32 ps,
including 4 ps of equilibration. The optimized gas phase
structure of the glycine radical (see Fig. 4), computed at
the B3LYP/NB level shows that the aminic group is to

Table 6 EPR hyperfine coupling constants calculated at
B3LYP/EPR-II level of theory for the glycine radical (GlyR) in
the gas phase, solvated with four water molecules (GlyR + 4H2O)
and by PCM, and in QM/MM aqueous solution simulation (see
Fig. 4 for atom labels)

GlyR GlyR + GlyR + 4H2O + Simul. Exp.
4H2O PCM

a(N) 5.45 4.07 4.19 5.58 6.38
a(H1) −5.77 −8.95 −9.10 −5.70 −5.59
a(H2) −3.73 −9.23 −9.39 −5.42 −5.59
a(Cα) 11.85 6.70 6.22 10.90
a(Hα) −14.54 −12.00 −11.74 −12.12 −11.77

some degree pyramidal, with φ(H1NCαC) = −9.5◦ and
φ(H2NCαC) = −165.0◦, whereas Hα is almost on the
same plane of the N-Cα-C group [φ(NHαCCα) = 1.6◦].
On the other hand, in aqueous solution the glycine rad-
ical is, on average, approximately planar: the fluctua-
tions of the above dihedral angles are symmetrically
distributed around the planar conformation and the ami-
nic hydrogens show an equal and broader distribution
than Hα (see Fig. 5). Also, the first solvation shell has
been analyzed in some detail. Considering H1, H2, Hα

and H as hydrogen bond donors and N, O1 and O2 as
hydrogen bond acceptors (see Fig. 4 for atom labels), we
have obtained the following average number of hydro-
gen bonds formed during the aqueous solution simula-
tion: H1 = 0.58, H2 = 0.68, N = 0.07, Hα = 0.23, O1
= 2.04, O2 = 0.87 and H = 1.00. Those values were
obtained based on cut-offs for the donor–hydrogen–
acceptor angle (60◦, zero corresponding to the linear
donor–hydrogen–acceptor arrangement) and the hyd-
ogen–acceptor distance (2.6 Å). At the same time, full
geometry optimization of a cluster containing glycine
radical and four water molecules provides a structure
very close to that shown in Fig. 4 of [81].

The isotropic hyperfine couplings computed by differ-
ent models of the glycine radical are compared in Table 6
with the results averaged over the QM/MM trajectory.
From the one hand, the remarkable agreement between
the computed values issuing from our QM/MM
simulation and experiment for all the available hyper-
fine splittings points out, once again, the reliability of the
computational approach. From the other hand, the non-
negligible difference between the results of the simula-
tion and those obtained for the isolated glycine radical
or the optimized cluster including the whole first solva-
tion shell point out the role of solvent effects both from
a static and a dynamic point of view. Starting from the
quite disappointing results obtained for the isolated rad-
ical, inclusion of the first solvation shell leads to nearly
equivalent H1 and H2 atoms, but the quantitative values
remain quite far from experiment. Next, inclusion of
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bulk solvent effects by the polarizable continuum model
(PCM) [41] has a negligible effect, and only dynami-
cal averaging (both intra- and inter-molecular) restores
agreement with experiment. Thus, none of the static
models is sufficient to provide even semi-quantitative
results and a dynamical treatment is needed to provide
a coherent picture. While the good results obtained in
[81] suggest that in this case intra-solute dynamics plays
a dominant role, the examples discussed in the previ-
ous sections show that this is not always the case, and
point out the interest of an integrated approach includ-
ing all the short-time dynamical effects (i.e. solute large
amplitude vibrations and solvent librations).

3.4 Vibrational analysis and IR spectra

Formamide is the simplest molecule containing the
N-C=O group found in peptides, and, for this reason, its
spectroscopic properties have been extensively studied,
both theoretically and experimentally. We investigated
the potentialities of a dynamical analysis to character-
ize the vibrational motion of formamide in acetonitrile
solution, when the solvent is implicitly included in the
simulation. Solvent effects have been evaluated by com-
parison with a corresponding dynamics obtained for the
system in the gas phase, and with a quantum vibra-
tional analysis exploiting the same ab initio potential.
Being the vibrational modes simulated at finite temper-
ature, a reliable comparison with the quantum treatment
requires for this latter a proper inclusion of anharmonic-
ity. In this case we exploited a vibrational Hamiltonian
in which cubic and quartic terms of the potential expan-
sion have been included via a perturbative methodology
[82,83].

Briefly, the dynamical analysis consisted in evaluat-
ing generalized normal modes Qi and associated fre-
quencies νi from eigenvectors and eigenvalues of the
covariance matrix of the nuclear linear momenta. We
recall that fundamental frequencies, as obtained by the
quantum treatment, correspond to single excitations of
vibrational quanta from the ground state, situated at the
zero point energy of the molecule. On the other hand,
the present dynamical analysis assigns characteristic fre-
quencies of classic coupled anharmonic oscillators. As
a consequence, frequency values are not constants of
motion. On the contrary, the values depend upon the
potential shape explored according to the configura-
tional distribution, which, in turn, depends upon the
total kinetic energy and, ultimately, on the tempera-
ture. Despite of the deep difference between the the two
descriptions, the frequency values obtained by the two
approaches reported in Table 7 can be nicely compared,

Table 7 Comparison of frequency values (cm−1) for formamide
in the gas phase obtained from the quantum mechanical pertu-
bative approach and the first-principle MD trajectory analysis at
B3LYP/6-31G(d,p) level of theory

Mode Pert. method MD

Out of plane NH2 – 421
Wagging out of phase NCO/NH2 564 561
Torsion 596 586
Out of plane CH 1,022 1,022
Wagging in phase NCO/NH2 1,055 1,042
CN stretch 1,212 1,244
In plane COH sciss 1,405 1,389
In plane NH2 sciss 1,582 1,605
CO stretch 1,775 1,758
CH stretch 2,814 2,822
Sym NH stretch 3,413 3,402
Asym NH stretch 3,525 3,555

Table 8 Frequency values and solvent shifts (cm−1) for formam-
ide in the gas phase and in acetonitrile solution obtained from
the corresponding first-principle MD trajectories at B3LYP/6-
31G(d,p) level of theory

Mode Gas phase Solution � Exp.[84]

Out of plane NH2 421 455 +34
Wagging out of phase
NCO/NH2 561 572 +10
Torsion 586 600 +12
Out of plane CH 1,022 1,008 −12
Wagging in phase NCO/NH2 1,042 1,068 +27
CN stretch 1,244 12,520 +8
In plane COH sciss 1,389 1,375 −13 (−2)
In plane NH2 sciss 1,605 1,610 +5 (+3)a

CO stretch 1,758 1,721 -37 −38
CH stretch 2,822 2,852 +29 (+33)
Sym NH stretch 3,402 3,458 +56
Asym NH stretch 3,555 3,575 +20

a Solvent shift for CH2 scissoring of formaldehyde
Experimental solvent shifts for formamide and formaldehyde (in
parenthesis) are also compared

the most important discrepancy being about 30 cm−1 for
the C–N stretching.

The trajectory simulating the formamide in acetoni-
trile solution samples a phase space representing the
solute instantaneously adjusted to the mean field of
the polarized solvent. This approximation is analogous
to the Born–Oppeheimer approximation, according to
which the electronic eigenstates are considered to instan-
taneously adjust to the nuclear configurations. In partic-
ular, the absence of explicit solvent coordinates in the
Hamiltonian involves an effective decoupling between
the solute vibration and the solvent dynamics. As a
consequence, the vibrational analysis does not capture
dynamical effects such as the broadening of the line-
widths in IR spectra. In the present case (neutral solute
and non-protic, weakly polar solvent), we can safely
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Fig. 6 IR simulated spectra
for formamide in gas phase
and acetonitrile solution

assume that coupling due to specific solute–solvent inter-
actions can be neglected, while the mean field inclusion
can take into account the most important features of the
solvent effects on the vibrational motion, namely fre-
quency shifts and modulation of the IR band intensities.
In Table 8, we collect frequency shifts induced by aceto-
nitrile. Corresponding values experimentally recorded
for formamide and formaldehyde in the same solvent
[84] are also reported for comparison. Generally, fre-
quency variations are compatible with the increase in
relative weight of the charge separation resonance struc-
ture, stabilized by the polar environment. For example,
we observe a sensible red-shift of the carbonyl stretch-
ing, due to the decrease of the double bond character:
the average value of the C = O bond length is 1.217 and
1.228 Å in gas phase and acetonitrile, respectively. On
the other hand, the increase of the C–N double bond
character is compatible with the blue-shift observed in
the wagging motions, the torsion and the C–N stretching
itself.

In Fig. 6, we compare IR spectra simulated both in
the gas phase and acetonitrile solution. The infrared
absorption coefficient, α(ω), is calculated from the Fou-
rier transform of the time correlation of the total dipole
moment, of the system, M(t)

α(ω)n(ω) = 2πβω2

3cV

∫
dt 〈M(t)M(0)〉 exp(iωt) (23)

where n(ω) is the refractive index of the medium at
frequency ω, β = 1/(kT), c is the speed of light in a vac-
uum, V is the volume and M is the formamide dipole

moment. Brackets indicate a statistical average. Equa-
tion 23 also accounts for a quantum correction fac-
tor (multiplying the classical line shape) of the form
βhω/(1 − exp(−βhω)) [85].

The most evident feature is the strong reduction of the
intensity of the band assigned to the carbonyl stretching.
This is what one could expect due to the increasing of
the polarity of the C=O bond induced by the solvent,
and the consequent decreasing of the dipole transition
moment.

4 Conclusions

In the present work, we have described in some detail an
effective and reliable mean field based model for simu-
lating and investigating the behavior of complex molec-
ular systems in condensed phases, such as solute–solvent
systems. The MF model allows to treat explicitly a
reduced part of the system, e.g. the solute and two/three
solvent shells, at different levels of theory, from very
efficient, but less accurate, molecular mechanics (MM)
methods to more sophisticated hybrid QM/MM or full
QM methods. Interactions with the environment (sol-
vent) are taken into account via a continuum model,
which properly includes both short-range dispersion–
repulsion and long-rage electrostatic contributions.
Remarkably, ab initio molecular dynamics can be per-
formed according to the Born–Oppenheimer or the
extended-Lagrangian scheme allowing to exploit con-
veniently both post-Hartree Fock and DFT methods
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using localized basis functions. In particular, popular and
well-trusted DFT methods based on hybrid function-
als, e.g. B3LYP and PBE0, can be used, in an efficient
manner, with the ADMP methodology. Overall, the MF
model can be considered a promising alternative, espe-
cially for non-periodic systems such as liquids and solu-
tions, with respect to other standard ab initio molecular
dynamics methods, like the Car–Parrinello approach.

Moreover, we have shown how accurate spectroscopic
properties, such as NMR chemical shifts, UV-vis tran-
sition energies and EPR hyperfine coupling constants,
of molecules in solution can be obtained by combining
the present model with post-MD high-level quantum
mechanical calculations. In particular, the effectiveness
of such a computational strategy was demonstrated con-
sidering the case of acetone, acrolein and glycine radical
in aqueous solutions and formamide in acetonitrile solu-
tion. Note that in the aqueous solution simulations part
of the solvent was treated explicitly to account for the
specific solute–solvent hydrogen bonding interactions,
whereas acetonitrile was entirely modeled as a struc-
tureless polarizable medium. Remarkably, an overall
fair agreement with experiments has been obtained in all
systems considered. Specifically, it has been shown that
structural fluctuations of the solute–solvent configura-
tions during the dynamics should be properly included
in the statistical averages of the computed spectroscopic
properties. Besides, from the vibrational mode analysis
of formamide, it has been shown that even more subtle
dynamical effects can be reliably studied with the MF
model.

In conclusion, we think that, at this stage, a number of
physical and chemical processes in solution can be reli-
ably explored by means of such an integrated approach,
provided that the relaxation times of such processes are
short enough to be accessible to standard computational
facilities. At longer time scale, the use of stocastic models
or other methodologies suited to enhance the configu-
rational sampling are certainly required.

Acknowledgements The financial support of MIUR and INSTM
is gratefully acknowledged. All the calculations have been per-
formed at “Campus Computational Grid”-Università di
Napoli “Federico II” advanced computing facilities.

References

1. Tomasi J, Persico M (1994) Chem Rev 94:2027
2. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161
3. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999
4. Brancato G, Nola AD, Barone V, Amadei A (2005) J Chem

Phys 122:154109
5. Brancato G, Rega N, Barone V (2006) J Chem Phys

124:214505

6. Rega N, Brancato G, Barone V (2006) Chem Phys Lett
422:367

7. Bolton K, Hase WL, Peslherbe GH (1998) Modern methods
for multidimensional dynamics computation in chemistry. In:
Direct dynamics of reactive systems. World Scientific, Singa-
pore, p. 143

8. Millam JM, Bakken V, Chen W, Hase WL, Schlegel HB
(1999) J Chem Phys 111:3800

9. Marx D, Hutter J (2000) Modern methods and algorithms
of quantum chemistry. Ab initio molecular dynamics: theory
and implementation vol 1. John vonNeumann Institute for
Computing, Julich p 301

10. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels
AD, Scuseria GE, Frisch MJ (2001) J Chem Phys 114:
9758

11. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE,
Frisch MJ (2001) J Chem Phys 115:10291

12. Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuse-
ria GE, Frisch MJ (2002) J Chem Phys 117:8694

13. Becke AD (1993) J Chem Phys 98:5648
14. Ben-Naim A (1987) Solvation thermodynamics. Plenum

Press, New York
15. Orozco M, Luque FJ (2000) Chem Rev 100:4187
16. Roux B, Simonson T (1999) Biophys Chemi 78:1
17. Pascual-Ahuir JL, Silla E, Tũnon I (1994) J Comput Chem
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